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Rate of Convergence 

Learning Rule 

 Every node begins with a strictly positive prior on each hypothesis. 

 Making observation:  At every time instant (t>0), nodes are make 

observations, Xi
(t) . 

 Bayesian update of belief: Every node using its 

observations performs a Bayesian update of its belief 

vector, bi
(t) (.), which is probability vector on the set of 

hypotheses. 

 Exchanging beliefs through network: Each node then sends its belief vector 

to the neighboring nodes. Similarly receives the belief vectors of its neighbours.  

 Updating estimate as average of log-beliefs: Using the belief vectors from 

the neighbors, each node updates its local estimate vector , qi
(t) (.), which is 

also a probability vector on the set of hypotheses. Estimate vector is computed 

as the average of log-beliefs using weights.  

 A set of “n” nodes and a finite set of “M” hypotheses Θ = 

{θ1, θ2, … ,θM}.  

 Nodes are make observations Xi
(t) at every time instant. 

 Observations are statistically governed by fixed true 

hypothesis θ*.  

Model 

Goal is the parametric inference of the fixed 

unknown global hypothesis θ* with n nodes. 

 

 Set  

 If node i is connected to node j 

 

 

 Otherwise 0. 

 Node i is uninformed if 

 

 

 Node i is informed if  

Only node 1 is informed Only node 5 is informed 

Factors influencing convergence 

Learning in a Co-authorship network 

 Network is an undirected weighted network of 

co-authorships formed from high-energy theory 

collaborations over a period of 5 years. 

 Weights capture strength of collaboration [3]. 

 Set of hypotheses is  

 

 

 Case 1: 

• Scientists are randomly divided into 5 groups. 

• Each group can distinguish between θ6  and 

some θ ≠ θ6 

 None of them can individually learn θ6 but 

using the proposed rule, nodes learn θ6, as 

shown in adjacent figure. 

 We compare our rule with existing one in the 

literature where averaging of log-beliefs is 

replaced with averaging the beliefs [2]. 

 We compare the performance in two cases. 

 Case 2: 

• Scientists are randomly divided into 10 groups. 

• Each group can distinguish between θ6  and 

some θi ≠ θ6  and some θj ≠ θ6 

 

 Our rule performs faster than the previous rule 

in both the cases. 

 We show this theoretically in [1]. 

 

References: 

1. A. Jadbababie, P.Molavi, and A. Tahbaz-Salehi, “Information Heterogeneity and the speed of learning in social networks”, Columbia Business School Research Paper No.13-28, June 2013. 

2. A. Lalitha, A. Sarwate and T. Javidi, “Social learning and distributed hypothesis testing”, in Proceedings of International Symposium on Information Theory (ISIT), July 2014. 

3. M. E. J Newman, “Scientific collaboration networks ii. Shortest paths, weighted networks and centrality ”, Phys. Rev. E, vol. 64, p. 016132, June 2001. 

Rate of rejecting θ in favor of θ* is influenced by eigenvector centrality and the  KL-divergence between  

conditional likelihood functions of θ and θ*. 


