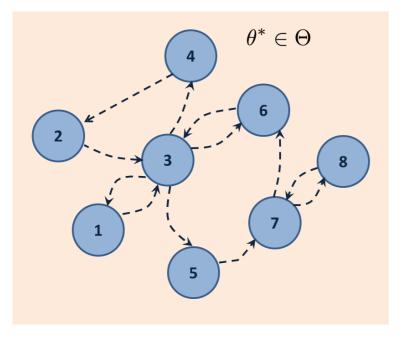
Social Learning and Distributed Hypothesis Testing

Anusha Lalitha¹, Tara Javidi¹, Anand Sarwate² ¹Dept. of Electrical and Computer Engineering, University of California, San Diego ²Dept. of Electrical and Computer Engineering, Rutgers University

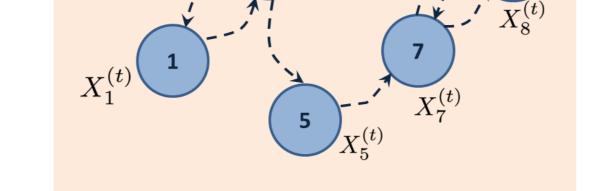
Learning Rule Model \blacktriangleright A set of "n" nodes and a finite set of "M" hypotheses $\Theta = 1$ \succ Every node begins with a strictly positive prior on each hypothesis. > Exchanging beliefs through network: Each node then sends its belief vector $\{\theta_1, \theta_2, \dots, \theta_M\}.$ > Making observation: At every time instant (t>0), nodes are make to the neighboring nodes. Similarly receives the belief vectors of its neighbours. > Nodes are make observations $X_i^{(t)}$ at every time instant. observations, $X_i^{(t)}$. > Observations are statistically governed by fixed true hypothesis θ^* .



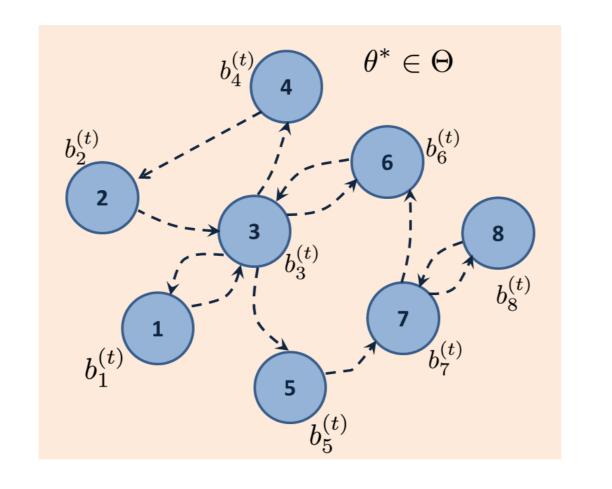
- Each node knows the conditional likelihood functions under each hypothesis. The set is given as $\{f_i(.; \theta): \theta \in I\}$ Θ
- > Nodes are connected in a strongly connected network.



Goal is the parametric inference of the fixed unknown global hypothesis θ^* with *n* nodes.



Bayesian update of belief: Every node using its observations performs a Bayesian update of its belief vector, b_i^(t) (.), which is probability vector on the set of hypotheses.



► Set $\Theta = \{\theta_1, \theta_2, \theta_3, \theta_4\}$ and $\theta^* = \theta_1$

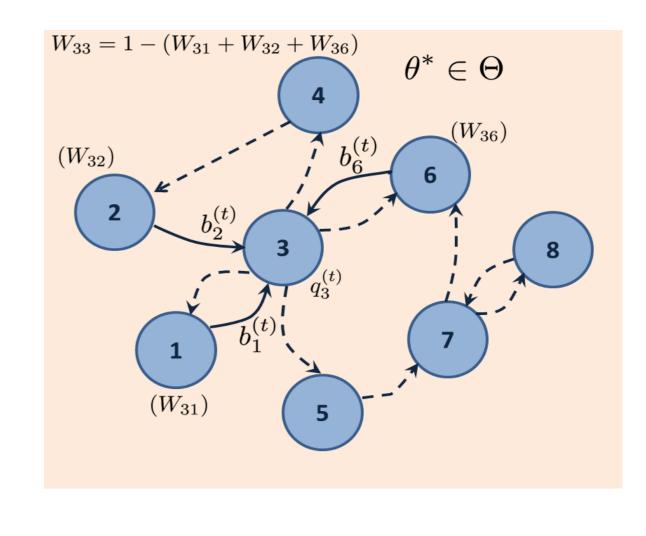
 \succ If node i is connected to node j

 $W_{ij} = \frac{1}{\text{degree of node } i}$

> Node i is uninformed if

 \succ Otherwise 0.

Updating estimate as average of log-beliefs: Using the belief vectors from the neighbors, each node updates its local estimate vector, q_i^(t) (.), which is also a probability vector on the set of hypotheses. Estimate vector is computed as the average of log-beliefs using weights.



Rate of Convergence

Factors influencing convergence

Rate of rejecting θ in favor of θ^* is influenced by eigenvector centrality and the KL-divergence between

- \blacktriangleright Weight W_{ii} > 0 if and only if there is an edge from node i to node j and $W_{ii} = 1 1$ $\sum_{j=1}^{n} W_{ij}$.
- > Markov chain defined by weight matrix W is irreducible.
- > The Markov chain defined by W has a unique stationary distribution, $\mathbf{v} = \{v_1, v_2, ..., v_n\}$, which is the left eigenvector of W associated with eigenvalue 1.
- \succ For any θ not equal to true hypothesis, we define the network divergence as

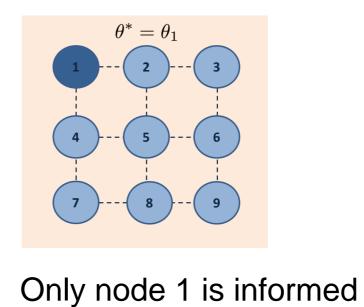
$$K(\theta^*,\theta) = \sum_{j=1}^n v_j D(f_j(.;\theta^*)||f_j(.;\theta))$$

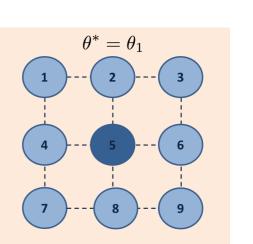
Theorem:

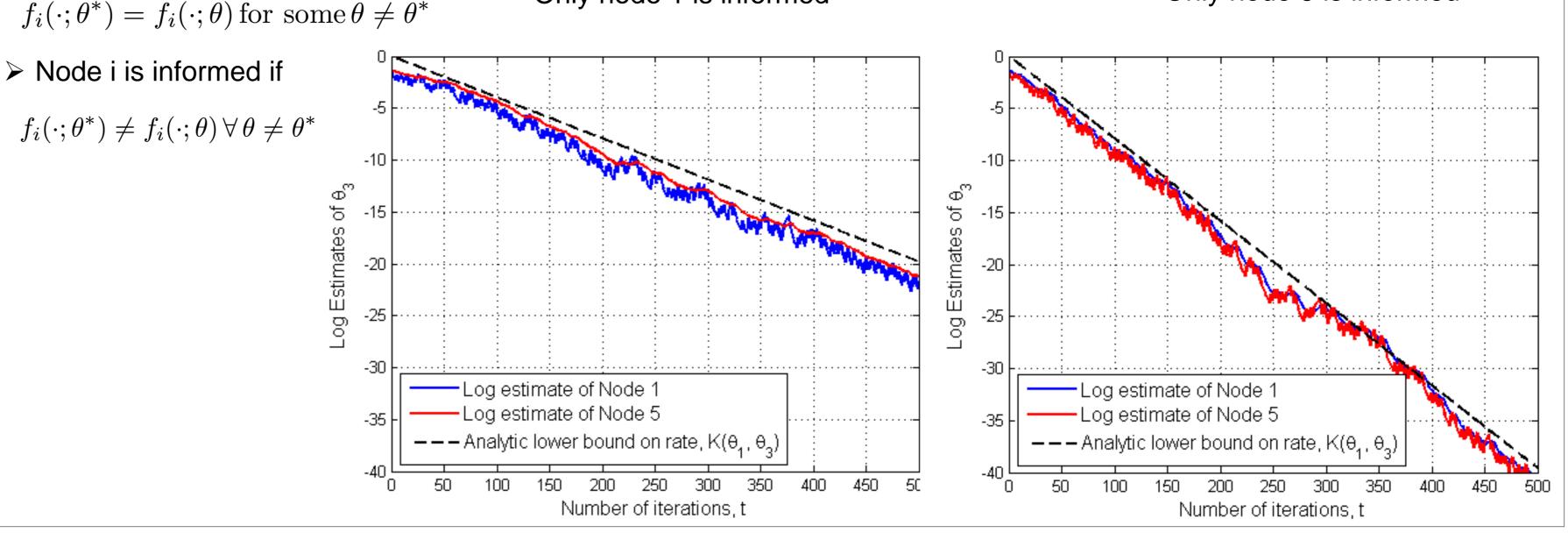
For every node in the network, the estimate of wrong hypothesis $\theta \neq \theta^*$ computed using the proposed learning rule converges to zero exponentially fast with probability one. Furthermore, the rate of rejecting hypothesis θ in favor of θ^* is given by the network divergence between θ and θ^* .

$$\lim_{t \to \infty} \frac{1}{t} \log q_i^{(t)}(\theta) = K(\theta^*, \theta)$$

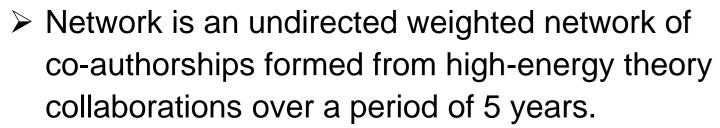
conditional likelihood functions of θ and θ^* .







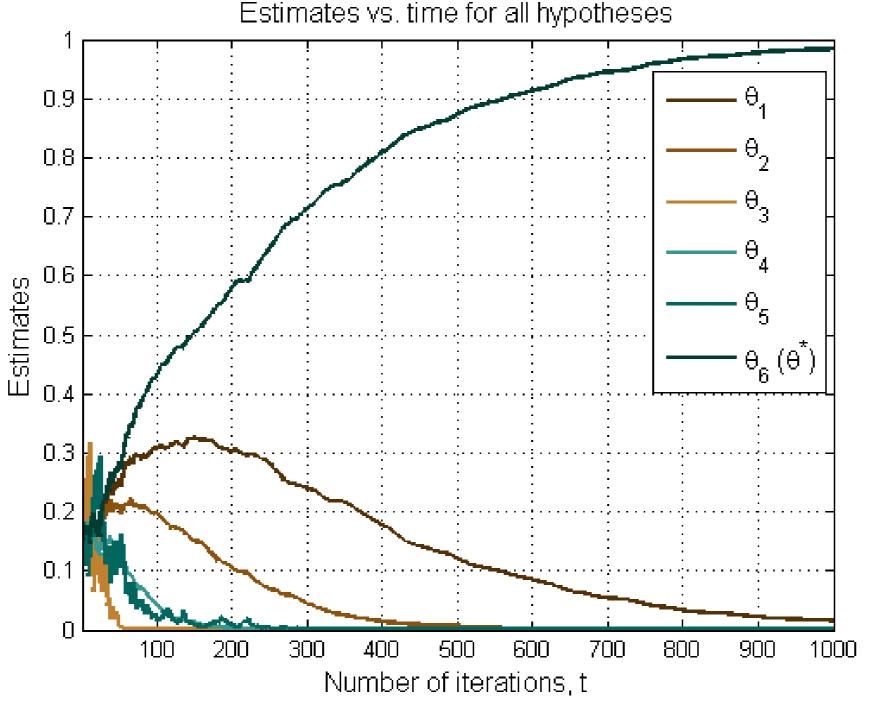
Learning in a Co-authorship network

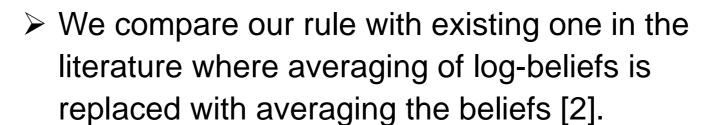


- \succ Weights capture strength of collaboration [3].
- Set of hypotheses is

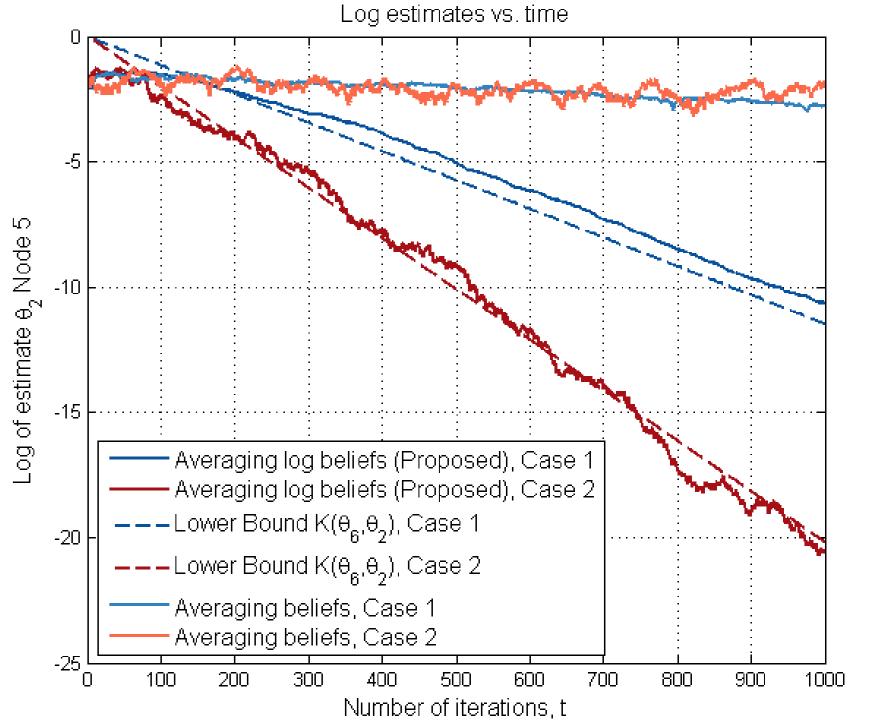
 $\Theta = \{\theta_1, \theta_2, \dots, \theta_6\}$ and $\theta^* = \theta_6$

- ➤ Case 1:
- Scientists are randomly divided into 5 groups.
- Each group can distinguish between θ_6 and some $\theta \neq \theta_6$
- \succ None of them can individually learn θ_6 but using the proposed rule, nodes learn θ_6 , as shown in adjacent figure.





- \succ We compare the performance in two cases. \succ Case 2:
- Scientists are randomly divided into 10 groups.
- Each group can distinguish between θ_6 and some $\theta_i \neq \theta_6$ and some $\theta_i \neq \theta_6$
- > Our rule performs faster than the previous rule in both the cases.
- \succ We show this theoretically in [1].



References:

- 1. A. Jadbababie, P.Molavi, and A. Tahbaz-Salehi, "Information Heterogeneity and the speed of learning in social networks", Columbia Business School Research Paper No.13-28, June 2013.
- 2. A. Lalitha, A. Sarwate and T. Javidi, "Social learning and distributed hypothesis testing", in Proceedings of International Symposium on Information Theory (ISIT), July 2014.
- 3. M. E. J Newman, "Scientific collaboration networks ii. Shortest paths, weighted networks and centrality", Phys. Rev. E, vol. 64, p. 016132, June 2001.