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Learning Rule

» Aset of "n” nodes and a finite set of "M” hypotheses O = > Every node begins with a strictly positive prior on each hypothesis.  » Exchanging beliefs through network: Each node then sends its belief vector
{6,,6,, ... .Ou} » Making observation: At every time instant (t>0), nodes are make to the neighboring nodes. Similarly receives the belief vectors of its neighbours.
» Nodes are make observations X at every time instant. observations, X.® .
» Observations are statistically governed by fixed true
. 0 €O
hypothesis 6*. x (®)
4

» Bayesian update of belief: Every node using its » Updating estimate as average of log-beliefs: Using the belief vectors from
> Each node knows the conditional likelihood functions observations performs a Bayesian update of its belief the neighbors, each node updates its local estimate vector , g® (.), which is
under each hypothesis. The set is given as {£.(.;0):0 € vector, b (.), which is probability vector on the set of also a probability vector on the set of hypotheses. Estimate vector is computed
0) hypotheses. as the average of log-beliefs using weights.

» Nodes are connected in a strongly connected network.
W33z =1 — (W31 + Wsg + Wag)
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Goal Is the parametric inference of the fixed ®b(t>
unknown global hypothesis 6* with n nodes.

Rate of Convergence Factors influencing convergence

Rate of rejecting 0 in favor of 0* is influenced by eigenvector centrality and the KL-divergence between

» Weight W; > 0 if and only if there is an edge from node i to node jand W;; = 1 — conditional likelihood functions of 8 and "

Wi, > Set 0= {91, 65, 03, 94} and 0 = 6, T = 0" = 6
J=1""1 .. . -- ().
» Markov chain defined by weight matrix W is irreducible. » It node 1 Is connected to node | . @ @ @ @ @
: : : : PRI _ 1 - - '
> Thg Mgrkov Chall’.l defined by W has a unique §tat|9nary distribution, v = {v, V,, .., V.}, Wij = @@@ @.@
which is the left eigenvector of W associated with eigenvalue 1. S | : : : : :
> For any 8 not equal to true hypothesis, we define the network divergence as » Otherwise 0. @@ @@
n » Node i is uninformed If
K©6',6) = ) vD((:0MIIf(:6) fi(56%) = fi(0) for some§ # 0* only node 1is informed onlynode S1s informed
j=1
> Node i is informed if g~ g
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For every node in the network, the estimate of wrong hypothesis 8 # 8* G U R T T .. s U N U P [ N DO N0 N S SRS N S
computed using the proposed Ilearning rule converges to zero g o e 2 Ny
exponentia"y fast With probability One_ Furthermore, the rate Of rejecting % S2OkF ........ ........ ........ ........ ........ _____ r-.._" i g 0k ........ ........ |
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Learning in a Co-authorship network

| | | Estimates vs. time for all hypotheses | o | , Log estimates vs. time
» Network is an undirected weighted network of 1 ! , ! , ! ! , ! . » We compare our rule with existing one in the SRl ! f ! { f ! f
co-authorships formed from high-energy theory 0g § : § § } f : | . literature where averaging of log-beliefs is St A e e T Y N
. . gQF.-.-.... P EERRERE e ERERERRRE | — = . ] ] . - --.,__‘. : :
collaborations over a period of 5 years. ; g ; ; : ; g 91 replaced with averaging the beliefs [2]. g "By e _ ' g ;
> We|ghts Capture Strength Of C0||aborat|on [3]. DB . _- ________ ______ _________ ________ . ________ ._ e — 2 | > We Compare the performance In tWO CaseS. S ......... H ......... H"'-..._.“h .......... .......... ......... —
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> Set of hypotheses is a7kl L A S s, . SO Bl = | » Case 2: o 5 5 e g TN | 5
- : : . : . : 12 : . : : : : e : :
5 : 5 5 5 5 | —8 « Scientists are randomly divided into 10 groups. E : 5 : o~ 2 N 5
© = {01,0s,...,0} and 0* = O OB v | Oy IS o NN TN
i ; : ; § ; ; | —5, « Each group can distinguish between 85 and o r : r : : z : r i
> Case 1 E O5kF------- ....... ........ ........ ......... ........ ........ ..... . B"" i some ei # 66 and some ej ;ﬁ 66 E
- Scientists are randomly divided into 5 groups. fj ., : j 5 § 5 i : 518 = ; ; ; ; ; ; : ; ;
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« Each group can distinguish between 6, and g ; g ; ; g ; g ; » Our rule performs faster than the previous rule = : ; : : z : ; “ g
some e # 66 03 .. Shall ..... ........ ......... ........ ________ ........ ....... _ in bOth the cases. Eﬂ ﬁizgg:zg :gg Ez::zg EEEEE:EE; Eziz; HHH
» None of them can individually learn 64 but 0.2 [ TN e, ........ T . T » We show this theoretically in [1]. oLl —=—Lower Bound K(8,.6,}, Case | R " N
using the proposed rule, nodes learn 8, as a1l L ........ e o L ....... | — ——Lower Bound K(8,,8,), Case 2
shown in adjacent figure. m : 5 Averaging beliefs, Case 1
I —— — ' ' Averaging beliefs, Case 2
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